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Single crystals of Te,O, have been prepared by hydrothermal synthesis. The structure has a hexagonal

cell with a=5=9-320, c=14-486

. Unusual extinctions indicate that the crystals are disordered. The

structure is built up of covalent (TeO;.3TeO,), layers and the disorder arises since these layers can be
stacked either normally or inverted. It was possible to divide the reflexions into three classes, corre-
sponding to contributions from the normally stacked structure, from the inverted structure, and from
both. The normally stacked structure crystallizes in space group R3. It was refined to an R of 0-042 and
revealed the expected Te'Y and Te"' coordination in the layers. TeY! is octahedrally surrounded by
oxygen atoms with Te¥'-O = 1-903 and 1-948 A. The four strong Te'Y-O bonds of 1-883, 1-902, 2:020 and
2:144 A are directed towards four corners of a trigonal bipyramid.

Introduction

Some crystallographic investigations of the structures
of phases in the TeO;-TeO,~H,0O system have been
carried out recently (Lindqvist, 1973). A new compound
in this system, Te,O,, has been isolated and character-
ized (Moret & Lindqvist, 1972) and the present study
has been undertaken to establish its crystal structure.

The oxygen coordination of Te"! has always been
found to be octahedral, while that of Te'V usually
varies considerably in different tellurates(IV), according
to the structural environment (Zemann, 1971; Lind-
qvist, 1973). However, Te,Os (Lindqvist & Moret,
1973a) and H,Te,04 (Lindqvist & Moret, 1973b) have
been shown to have closely related structures, the
coordination polyhedra of Te!Y and Te"! in the one
compound showing remarkable similarity to the corres-
ponding polyhedra in the other. Since a comparison
of these polyhedra has proved valuable in the clarifi-
cation of the effect of the environment on the Te!V and
Te¥! oxygen bonds, it was hoped that the structure of
Te,O,, which is another simple Te'V'V! oxide, would
supply further information.

Experimental

Single crystals of Te,O, were prepared by hyarothermal
synthesis at 350°C starting from Te(OH),, TeO, and
H,0 (Moret, 1972). Te,O, has a hexagonal lattice, and
the cell dimensions a=56=9-320 (5), c=14-486 (5) A,
were calculated from measurements on a powder dif-
fractometer (Moret & Lindqvist, 1972). The density
was 59 g cm~3, which indicated Z=6 (9¢;c=597 g
cm~3), Weissenberg and precession photographs of

different crystals showed no ordinary extinctions other
than for 00/, /+3n. On the other hand, only those re-
flexions with either —hA+k+I/=3n or h—k+I1=3n
were present, indicating that Te,O, might be twinned
or disordered. It was not possible to detect any con-
tinuous intensity distribution in reciprocal space for
any of the crystals mounted.

The crystal selected for data collection had well-
developed faces (Table 1) and was mounted along ¢
on a Pailred two-circle diffractometer. Graphite-mono-
chromated Mo Kua radiation was used. The intensities
were collected by the w-scan procedure with a scanning
speed of 2:5° min~1. The background was measured
for 24 s at each end of the scan interval, which was
varied between 3-0 and 6-0° for different scattering
vectors. One quarter of the reciprocal sphere was ex-
plored out to 260~ 60°. Within this limit reflexions cor-
responding to the hexagonal lattice were measured
and thus the unusual reflexion conditions —i+k+1=3n

Table 1. Dimensions of the crystal used for data col-
lection

The distances from a common origin to each plane are given.

Plane
h k1 d (mm)
0o 0 1 0-088
0 0 -1 0-088
1 1 1 0-102
-2 1 1 0-102
1 -2 1 0-102
2 -1 -1 0-102
-1 2 -1 0-102
-1 -1 —1 0-102

Crystal volume: 0-65 x 102 mm?
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and A—k +/=23n could be checked. The 1618 reflexions
with ¢(1)/I<0-3 were defined as significant.

The program DATAPI, written by O. Lindgren,
Goteborg, was used for the calculation of Lp factors,
and the data were corrected for absorption with the
program DATAP2 (Coppens, Leiserowitz & Rabino-
vich, 1965). ttmo ke=164-8 cm~! was calculated from
International Tables for X-ray Crystallography (1962),
the transmission factors varying from 0-070 to 0-142.

Structure determination

The reflexions with —4+k+1/=3n, according to the
above definition of axes, were generally much stronger
than the others. These strong reflexions, corresponding
to one of the rhombohedral space groups R3 or R3,
were selected for a preliminary investigation of the
structure. The Patterson function revealed two Te
positions in R3: 6(c) for Te¥! and 18(f) for Te!Y.
A subsequent electron-density calculation gave maxima
corresponding to all the O atoms [three positions 18(f)].
A preliminary refinement of the atomic coordinates
and isotropic temperature factors gave an R as low as
0-084, although it was evident that this structure
model could not explain the weaker intensities, i.e.
those with A—k+1=3n, [#3n.

To account for the weak reflexions, different models
with hexagonal symmetry lower than R3 were tried
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(e.g. P3,P3, P3, and P3,), but none gave satisfactory
agreement. In every refinement the structure converged
towards the R3 arrangement.

Since the R3 structure ought to be essentially correct,
according to the results of the refinement, it was
studied geometrically to see if some type of disorder
might be possible. The structure is built up from
layers of covalently connected Te and O atoms per-
pendicular to ¢ (Fig. 1). These layers are held together
by van der Waals forces only, being in accordance
with the observed crystal cleavage planes (¢f. Fig. 2).
In the R3 structure, adjacent layers, defined as LO
and L1, are related by [x,y,z] = [§+xi+p.3+7]
(Fig. 3). If instead the operation [x,y,z] — [} +»,}3+
x,5+2z] is considered the resulting transformed layer,
LY’, (Fig. 4) would correspond to a structure in which
¢ is inverted. As indicated in Figs. 3 and 4 there are
no great differences between the inter-layer O---O
contacts if the packing sequence LO,L1’ occurs in-
stead of LO,L1. It was therefore assumed that the
Te,Oy crystals prepared were disordered, i.e. that they
contained sheets of normal layers as well as sheets
of inverted layers. Since there is no continuous inten-
sity distribution along ¢*, each ordered sheet must
contain a large number of layers (Fig. 2).

According to this model, the two inverted structures
should have the reflexion conditions —Ah+k+/=3n
{normalstructure) and 4 — k + /= 3n(inverted structure).

The fractional coordinates refer to the normal R3 symmetry. The anisotropic temperature factor is

Table 2. Final atomic parameters in the Te,Q, layers

exp [—27%(Ha*2 Uy + k*b*2 Uz + 12¢*2 Usy + 2hka*b* Uy, + 2hla*c* Uys + 2kib*c* Uys) x 1079),

x y z B(AY
TeY in 6(c) 1 3 0-48473 (8) 0-42 (4)
Te™  18(f) 0-73555(7) 0-02099 (8) 0-42020 (4) 0-57 (3)
o(ly 18(f) 0:3650 (10) 0-8458 (10) 0:5667 (6) 0-80 (13)
02y 18(f) 0-8218 (10) 0-3153 (11) 0-5928 (5) 0-66 (12)
O@3) 18(f) 0-2581 (11) 0-0282 (10) 0-4543 (5) 0-98 (13)
Ul 1 UZZ U33 Ull Ul3 UZ3
Tev! 51 (5) 51 (5) 38 (3) 26 (5) 0 0
Te!Y 66 (3) 73 (3) 48 (2) 34 (2) 3(2) —15(2)
o(1) 78 (33) 72 (33) 71 (21) 10 27) 5(25) —83 (25)
0Q2) 88 (35) 141 (36) 53 (21) 97 (30) —34 (25) —13 (25)
0(@3) 124 (36) 129 (36) 64 (22) 35 (30) —28 (25) 88 (25)

Isotropic extinction parameter (Coppens & Hamilton, 1970): g=1-36 (14) x 10%.

Fig. 1. Stereoscopic picture of part of an infinite layer, L0, in Te,Os.
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(a) (b)

Fig. 2. Electron micrographs of a fragment of a Te,O, crystal. The cleavage planes perpendicular to the ¢ axis are visible.
The magnifications are (a) 360 x and (b) 1800 x .

[To face p. 1256
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To confirm the proposed arrangement the two classes
of reflexions were treated separately, and those re-
flexions fulfilling both conditions, i.e. with /=23n, were
discarded. A preliminary refinement based on the weak-
er set of reflexions (h—k+17/=3n, I+ 3n), with atomic
parameters corresponding to the inverted structure,
gave an R of 0-11, which verifies the hypothesis given
above.

Table 3. Observed and calculated structure factors for
the normal structure of Te O,

The columns are /, F, and F,, respectively.
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For the continued refinement of the structural pa-
rameters of Te,Oq only the reflexions with —A+k+ /=
3n, I#3n were used. These reflexions were generally
strong and had been measured with good statistics. The
F,[F, scale factors for the two different sets of data
indicated that the inverted structure only occurred to
an extent of ~12% in the crystal used for data collec-
tion.

Since the reflexions selected can be considered to cor-
respond to a fully ordered structure, the final refine-
ment could be performed in the usual manner. After
inclusion of anisotropic temperature factors and an
isotropic extinction parameter (g) a final R of 0-042
was obtained. The atomic parameters with their stan-
dard deviations are given in Table 2. A difference
synthesis showed a maximum electron density of 1-5
e A~3. Observed and calculated structure factors for
the 495 independent reflexions used in the final re-
finement are given in Table 3.

Scattering factors given by Cromer & Waber (1965)
were used for Te and those by Doyle & Turner (1968)
for O. The Te scattering factors were corrected for the
real part of the anomalous dispersion (Cromer, 1965).
The weights used in the refinement were calculated
from w=(a+F,+cF2+dF3)~! (Cruickshank, 1970)
with ¢=40-0, c=0-003 and d=0-00002. A weight anal-
ysis is given in Table 4.

The Fourier summations were performed with the
program DRF, written by A. Zalkin, Berkeley, Cali-

Table 4. Weight analysis after the last cycle of re-
finement

The quantities wA4? are normalized sums, Koorm (Sw|F,—F.||?),
and N is the number of reflexions within each F, interval.
wa? N
3-49 56
1-02 60
0-41 47
091 56
049 46
0-50 46
0-93 49
0-57 45
063 47
345-9-630-0 0-52 43

R =3|F,—I|Fl|/3F, =0-042
R, =Cw|F,—|F|[)/SwF3)!*=0-065

F, interval

0 - 465
46-5- 712
71-2- 912
91-2-116-1
116-1-142-2
142-2-171-9
171-9-212-1
212-1-261-9
261-9-345-9

Fig. 3. Stereoscopic view of two normally packed layers, LO and L1. The shortest inter_-layer oxygen-oxygen [O(2) in LO, O(3)
in L1] distance of 2-94 A is indicated by a dotted line.

AC3IB-3
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fornia, and the refinement with BLOCK, written by
O. Lindgren, Goéteborg, and LINUS (Coppens &
Hamilton, 1970) for the final cycles. Interatomic dis-
tances and angles (¢f. Tables 5 and 6) were calculated
with the program DISTAN written by A. Zalkin.

Table 5. Distances (A) and angles (°) within the
tellurium oxygen polyhedra

The notation is in accordance with Figs. 5 and 6.

TeV-0(2) 1903 8) 3x) TelY-0(1) 1:902 (9)
TeV-0(1) 1948 (9) 3x) Te-0(3) 1-883 (8)
Te'V-0(2) 2:020 (9)
O(1)-Te"'-0O(1) 867 (4) TeV-0(3") 2-144 (8)
O(1)-Te"'-0(2) 946 (4) TeV-0(3") 2-820 (9)
O(1)-Te"'-0(2) 901 (4)
0(2)-TeV'-0(2) 887 (3) O(1)-TelV-0(2) 883 (4)
O(1)-Te"V-0(3) 985 (4)
TeV-O(1)-Te" 1351 (5) O(1)-Te'V-0(3")  90-1 (3)
TeV-0(2)-Te" 1385 (4) 0(2)-Te'V-0(3) 908 (3)
Te'V-0(3)-Te" 1181 (4) O(2)-Te'V-0(3") 1720 (3)
0(3)-Te'V-03)  81-7 (3)

Table 6. Inter-layer oxygenz)xygen distances below
40

(@) Normally packed layers

O(1)-0O(1) 3-282 (15) 2x)
O(1)-0(3) 3-720 (12)
0(2)-0(2) 3-593 (17)
0(2)-0(3) 2:943 (11)
(b) One layer inverted
O(1)-0(2) 2:782 (11)
O(1)-0(2) 3-139 (11)
O(1)-0(2) 3959 (12)
0(1)-0(3) 3288 (11)
0(2)-0(2) 3793 (11)
0(2)-0(3) 3-487 (11)
0(2)-0(3) 2920 (11)
Discussion

The layers found in Te,O, are built up from Te¥'O4
octahedra and Te'VO, units which share corners (Fig.
1). The three-dimensional structure is formed by the
stacking of such layers upon each other in the ¢ di-
rection. The disorder, as described above, may occur
since the shortest inter-layer O-O van der Waals dis-
tances between normal layers are only slightly longer
than those obtained if one layer is inverted (Table 6).

THE CRYSTAL STRUCTURE OF Te; O

The identical building units in the two possible stacking
seqences suggest that fragments of infinite layers shown
in Fig. 1 might be present in aqueous solution during
the hydrothermal preparation. Formally, it is difficult
to classify the disorder found in Te,O4. It does not
conform to the definition of OD structures (Dorn-
berger-Schiff, 1966), since the vicinity condition re-
quired for such structures is not fulfilled. Nor is it a
twin, since no twin plane is present.

The coordination polyhedra of TeY! and Te'V in
Te,O, (Figs. 5 and 6) are very similar to those in
Te,Os (Lindqvist & Moret, 1973a) and in H,Te,0O4
(Lindqvist & Moret, 1973b). The octahedral coordina-
tion of TeY! deviates somewhat from the ideal symme-
try (Table 5) and the difference between the Te'V'-O(2)
and TeY-O(1) bond lengths of 1-903 (8) and 1-948 (9)
A has a clear significance.

The four-coordination of Te!Y conforms well to the
usual description as a trigonal bipyramid with one of
the equatorial positions occupied by the free electron
pair. The difference between the two axial bonds,
2:020 (9) and 2-144 (8) A, is of the same magnitude
as in Te(C4H,0,), (Lindqvist, 1967) and in Te,0,. HNO;

Fig. 5. The octahedral coordination of Te¥! with distances in A.

Fig. 4. Stereoscopic view of two layers (L0,L1’) where the above layer is inverted in relation to layer L1 in Fig. 3. The dotted
line indicates the shortest inter-layer oxygen—oxygen distance of 2-78 A [O(2) in LO, O(1) in L17.
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Fig. 6. The four-coordination of Te'¥ with distances in A.

(Swink & Carpenter, 1966) and may be explained as a
weak tendency towards threefold Te'V coordination.
The continuous variation of the fourth Te!'V-O length
from ~2-05 A in pure fourfold coordination to ~ 3-00
A in pure threefold coordination has been reviewed
previously (Zemann, 1971; Lindqvist, 1973) and has
also been discussed in connexion with the investigation
of CuTe,Os (Hanke, Kupdik & Lindqvist, 1973).

The Te,0s and the H,Te,O4 structure investigations
indicated a correlation between the variation in the
TeV1-0 lengths and the Te'V axial and equatorial bonds.
In the TeV'-O-Te",, sequence the Te"'-O bond was
found to be significantly longer than in the TeV'-O-
Te!V,, bridge. The explanation suggested for this effect
(Lindqvist & Moret, 1973a) is that the O electrons
available for 7 bonding are engaged in the Te'Y-O,q
bond to a much larger extent than in the Te'V-O,,
bond. In the TeY-O-Tel!V,, bridge the oxygen p orbital

AC31B-3*
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available for n bonding can therefore be oriented
favourably for = contribution to the TeV'-O bond.
This is clearly also the case in Te,O, (Table 5), in
which the TeY'-O bonds are 1-903 (8) and 1:948 (9) A,
as the oxygen atom is connected to Te'Y in axial or
equatorial position, respectively.

We wish to thank Professors G. Lundgren and M.
Maurin for their support of this work. Financial aid
has been given by the Swedish Natural Science Re-
search Council (NFR, Contract No. 2318).
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